The cities of tomorrow

Alina writes*

Cities have become the hubs of human settlement, development, and economic growth over the last two centuries. Globally, urban spaces occupy 1-3% of terrestrial land, yet in 2018, cities accommodated 55% of the world’s population. The percentage is expected to rise to 68% by 2050. Additionally, urban based-economic activities generate an estimated 55%, 73%, and 85% of gross national product in low-, middle-, and high-income nations [pdf] respectively. From these statistics, it is evident that urban environments have become detrimental to natural environments, consuming 78% of the world’s energy and producing 60% of global greenhouse gases. It is critical to make urban landscapes environmentally sustainable in order to mitigate and prevent projected environmental catastrophes.

Eco-cities are a recent urban phenomenon entailing a city built from scratch with a fundamental focus on sustainability embedded in its design, operation, and management.

One example is the Songdo eco-city, which is actually a district within Incheon, South Korea. At its heart, Songdo strives to have a substantially smaller carbon footprint than traditional cities and to be highly energy and resource efficient. Sustainable elements include, but not limited to:

These sustainable aspects sound great on paper. However, it is worth evaluating the extent to which an eco-city is more sustainable than a traditional city.

A major shortcoming of Songdo and other eco-cities is that building an entire city or urban district from scratch is incredibly challenging. It requires a large chunk of empty land which is suitable for urban development and hefty upfront investment costs. Songdo’s capital cost was worth $40 billion making it one of the most expensive private developments in the world.

Additionally, the majority of the cities in the world are already built, meaning they have locked-in unsustainable infrastructure, and are unlikely to be torn down and rebuilt sustainably. Thus, it could perhaps be more beneficial to optimise existing cities by implementing sustainable elements into them rather than creating eco-cities from scratch.

Bottom line: Songdo could be the blueprint of future eco-cities; however, it is still just a pilot version. Eco-cities have considerable potential to solve urban environmental problems, but most cities – which are traditional and non-sustainably designed – will continue to operate unsustainably due to infrastructural lock-ins.


* Please help my Environmental Economics students by commenting on unclear analysis, alternative perspectives, better data sources, or maybe just saying something nice :).

The safest country in the world?

Emil writes*

The Netherlands is famed for its water management prowess. This is not for nothing, from the construction of the Afsluitdijk after the Zuiderzeevloed in 1916, to the Delta works after the Watersnoodramp in 1953, water is, and always has been, a genuine threat to livelihood in the Netherlands. Through this decorated history of water management, the Netherlands has built up a complex network of governmental institutions that divide the responsibilities of domestic water management. An important responsibility of this network is flood management. The relevant institutions use a multilayer safety framework, in which flood prevention takes priority over spatial design (tailored to flood damage curtailment) and crisis management (in case of flooding).

In 2017, the norms of flood prevention were updated through the adoption of the new Waterwet (Water Law). Flood management must now be assessed based on risk, which is defined both by the probability of a flood occurring, and the consequences that flooding entails. Based on this, the probability of flooding must be low in places where the consequences would be great in order to minimize risk. Risk is calculated per dike trajectory, of which the Netherlands has 255. (A “dike trajectory” is a set of dikes for organisational and management purposes in the larger institutional framework. A trajectory ranges from 0.2 km to 47 km in length.)

The accepted probability of a flood occurring is calculated based on two different methods: Local Individual Risk (LIR) and Societal Cost Benefit Analysis (SCBA). LIR refers to the probability of death by flooding and must be ≤0.00001 death per year. Mortality is a constant between zero and one, determined on a neighborhood scale. It represents the average mortality by flooding based on historical data. The highest mortality value within an area behind a dike trajectory determines the mortality constant for the whole trajectory. The evacuation fraction is the estimated proportion of the human population behind a single dike trajectory that can be evacuated preventatively. With these equation terms, the flooding probability for a dike trajectory can be calculated as:

LIR = Flooding probability * Mortality * (1 – Evacuation fraction)

Just like LIR, the SCBA [pdf] calculates flooding probability per dike trajectory, but based on economic value. It is a very complex cost benefit analysis, but notable factors include a discount rate of 5.5% and “value of a statistical life” of € 6.7 million.

For each dike trajectory, the lowest probability calculated, by either LIR or SCBA, is used for the entire dike trajectory. Whether a dike trajectory meets the required safety norm is determined through annual inspection but can change over time. Land subsidence or sea level rise could alter the flooding probability. With the determined flooding probability, it is possible to calculate the economically optimal time to initiate flood defense construction. The flooding probability sharply decreases after the construction of new defense works, after which it increases slowly for the aforementioned reasons. The flooding probability follows a downward trend over time because of increasing population and economic value behind the dikes, which therefore increases the risk of flooding.

The Netherlands’ flood defense management seems impeccable, but the costs of defending against sea level rise of 45 cm to 85 cm by 2085 may be steep.

Bottom Line: Facing a 1/100000 chance of dying in a flood, every year, may seem terrifying, but it’s subjective and should make you grateful for being born here and not in another low-lying, coastal area.


* Please help my Environmental Economics students by commenting on unclear analysis, alternative perspectives, better data sources, or maybe just saying something nice :).

A labyrinth of poor choices

Miqui writes*

The shoes are recycled, upcycled, organic, vegan, made in the EU, and come with a promise to plant two trees! The fashion industry is pushing our buttons and pulling our levers to temp us to purchase new shoes, without guilt. The green movement has become trendy and hip as it’s expanded beyond hippies. In Green consumption: the Global rise of Eco-chic, Bart Barendregt argues that green lifestyles are now part of capitalist society. Now elites combine their environmentalism with taste and personal wellness.

It is, however, the question whether this green movement is actually helping in achieving our environmental goals. Genuine pro-environmental behaviour is severely limited by bounded rationality. With bounded rationality people strive consciously to attain certain goals they have in mind but are also strongly limited in making an optimal choice by things like information gaps, information asymmetries, heuristics and a range of biases.

This bounded rationality is gratefully abused by some parts of the fashion industry. In this, companies make “unwarranted or overblown claims of sustainability or environmental friendliness in an attempt to gain market share”. Because of our bounded rationality people are not well equipped to stand strong against this greenwashing and consequently end up buying products that do not deliver the environmental-friendly result that the ad or label promised.

One thing is clear, sustainable consumption is an oxymoron. Consumption of products practically always involves the use of resources and the production of waste which in an overpopulated earth inevitably harms the environment. Sustainable consumption is no consumption.

Nevertheless, we can reduce our footprint by buying recycled, upcycled, organic, vegan, second-hand and offset emissions. As explained above, we are very limited in making a choice with an optimal environmental result.

For example, the promise of a shoe brand to plant two trees if you buy their product sounds like a great deal for an environmentalist, but do most people know whether these two trees actually compensate in any significant way? It does for your consumer shame but with regard to the environment it is a complicated question. The image of two large, full-grown trees and a pair of shoes probably comforts you with regard to the CO2 emissions. Perhaps those trees actually do compensate for the CO2 emissions but the production and sale of shoes involves much more than the CO2 emissions.

A Life Cycle Assessment (LCA) on footwear tells us that the use of energy, and the raising of cattle in the case of leather shoes, indeed has a huge impact on global warming. However, what this LCA also shows is that there is a striking impact in the solid waste management phase and that cattle raising also results in significant acidification and eutrophication of environments. An important factor in this assessment is the studied production area which considerable affects the impact of production. What this means is that offsetting CO2 by planting two trees does not compensate the wide range of environmental impacts.

With this in mind, is it possible for a mainstream consumer to make a well-intended choice with an optimal environmental result? Arguably not. Most people simply do not have the time, resources and capability to come to such a result. According to Thomas P. Lyon, a business professor at the University of Michigan, says that “the ideal system for regulating green marketing claims would entail comprehensive labeling and certification requirements”. Whether labeling and certifications are helpful in promoting environmental behavior is not clear. Lyon compares it with making right decision in relation to healthy food as he argues that “there’s not a lot of evidence that those nutrition labels have changed America’s eating habits.”

Bottom line: The green movement is turning trendy. More people are developing environmental awareness, and pro-environmental choices are going mainstream. We are on the right track, even if we’re a bit distracted as to what it means.


* Please help my Environmental Economics students by commenting on unclear analysis, alternative perspectives, better data sources, or maybe just saying something nice :).

Valuing tigers and humans

Shivalika writes*

The Sundarbans — the world’s largest mangrove ecosystem — is shared between India and Bangladesh. With the global mangrove biome increasingly under threat from human exploitation, how India and Bangladesh choose to manage and conserve the Sundarbans could be the difference between preserving these crucial and biodiverse habitats or letting them disappear in 100 years. But the two countries are struggling to manage this resource effectively. A necessary first step is forming a cooperative alliance to collectively manage the resource.

The Sundarbans provide many crucial ecosystem services. They are, for example, the last remaining stronghold for the endangered Royal Bengal Tiger and host several species of mangrove trees that have an intrinsic value of their own. The livelihood of roughly 3.5 million coastal residents depends on the forest. Due to climate change and resulting sea-level rise, the mangroves provide essential flood protection and reduced mortality from floods, tsunamis, and cyclones that are common in the area.

Photo by Deshakalyan Chowdhury, AFP.

One can, by this point, draw the conclusion that the Sundarbans need to be protected, at all costs. But what are these costs exactly? It is the environmental economist’s duty to quantify the benefits of action and the costs of inaction to inform policy. One simply cannot put “all costs” into one cause.

A cost-benefit analysis is thus called for to make credible policy suggestions to the Indian and Bangladeshi governments in regard to the protection of the Sundarbans. About a quarter of the Indian Sundarbans [pdf] is currently a core protected area – allowing no human activity whatsoever. In the Bangladeshi Sundarbans, 23% of the area is declared protected.

What would the area look like if the entirety of it was protected? This policy appeals to advocates of strong sustainability or preservationists, but there are economic, social, and political consequences to consider.

Take the example of Bengal tiger protection alone. Here, there are economic costs for enforcement and monitoring, social costs because of the tiger-human conflict in the surrounding villages, and political implications of any policy that would effectively be perceived as a prioritisation of the lives of tigers over the lives of people that depend on extractive industries in the Sundarbans or have been hurt or killed by tigers. The intrinsic value of the tiger, or extrinsic value of the ecosystem of which it is a part, are the benefits of this proposed policy. And tigers are only a small part of the Sundarbans. A bigger picture analysis would need to include a host of different factors to consider and monetise.

Bottom line: These costs and benefits are, if at all possible, not easy to monetise. But even a humble attempt at doing so will add to the understanding of the complex nature of the Sundarbans, and the ever more complex consequences of any policy for their conservation.

 


* Please help my Environmental Economics students by commenting on unclear analysis, alternative perspectives, better data sources, or maybe just saying something nice :).

True costs of 5G

Marieke writes*

The wireless network has become an indispensable part of our society, the 5th generation will soon be implemented. The implementation of the 5G network in the Netherlands is planned in Amsterdam by 2020, and from 2025 onwards all European cities have to be covered according to the Dutch news provider.

What does 5G actually entail? Technically speaking, 5G enables a much faster connection (up until 20 Gbps, which means 20 times faster Wi-Fi and 30 times faster data) and it used a much bigger bandwidth of the mobile broadband, which will generate a bigger capacity and coverage for all network-users. Next to providing the possibility of using the wireless network with a massively increased speed, the 5G network will also enable the following possibilities:

  • Internet of things, e.g., smart heating-systems, self-ordering fridges, etc.
  • Self-driving cars
  • Smart cities, e.g., parking lots with sensors or automatic streetlamps
  • Industrialized automation, e.g., scheduling maintenance from a distance
  • Voice commands via devices such as Siri, Alexa and Google

For 5G internet many more, but smaller antennas are needed than for 4G. Volkskrant says that to cover an entire city with internet, an antenna is needed on every corner of the street.

When reading into the literature (both academic, peer reviewed sources, newspaper articles and websites of pro-5G stakeholders), it becomes clear that 5G is mainly presented as economically profitable, firstly because of the insane number of new products that can be brought onto the market or other uses of products that can be optimized, but also because it is said to be more energy efficient than 4G networks. T-mobile for example emphasizes that industrialized automation will save a lot of costs that are a result of current inefficiencies in the production process of many products and services.

However, what remains undiscussed in these sources, are the negative  externalities. For example:

  • Energy costs: even though 5G uses less energy per operation, the overall use of internet will increase, because more devices will be connected to the wireless system. Next to this, 5G requires the production of new devices and infrastructure to replace 4G devices and systems, increasing energy consumption and CO2 emissions [pdf].
  • Impact of radiation on mental health: it is argued that the addition of the high frequency 5G radiation to an already complex mix of lower frequencies (prior generations), will contribute to a negative public health outcome. It is stressed that the effects are still too unclear to draw any long-term conclusions. Additionally, the effects are hard to measure, since there is no control group anymore (everyone is exposed to the radiation). It is emphasized that these effects need to be studied before 5G is brought to the market
  • Lastly, the current generation of wireless connection, is already proven to negatively impact mental health, when assessing the impact of smartphone and social media use. The question arises if this would increase with the introduction to 5G.

Bottom line: For my essay I want to research the costs of these externalities and compare them to the economic benefits of the implementation of the 5G network.


* Please help my Environmental Economics students by commenting on unclear analysis, alternative perspectives, better data sources, or maybe just saying something nice :).

Educating girls: Two birds, one stone

Jasmijn writes*

It is commonly assumed that solutions to climate change are to be found in the realm of the natural environment. It is intuitive that decisionmakers and individuals focus on interventions such as the development of renewable energy sources, plant-based diets and the recycling of plastic in the process of adopting climate change mitigation strategies or more sustainable life styles. As a result, policies that have traditionally been labeled as part of the social equality and development discourse are rarely considered.

An example of a rather surprising but highly influential climate policy is the promotion of education for girls. This policy kills two birds with one stone and addresses three of the Sustainable Development Goals: quality education, gender equality and climate action. To put it into more economic terms, it appears that increasing education for girls might have positive externalities that we are unaware of. If these environmental benefits are quantified, funding could be provided by environmental governmental departments and NGOs and thereby supplement the resources already available through development aid. More resources available means a higher chance of a successful policy.

One of the most obvious advantageous characteristics of a society with more educated women is a reduced rate of population growth, because better education women tend to have less children. Classic authors such as Malthus (1798) [pdf] and Erlich (1968) have highlighted that our increasing human population will ultimately lead to the degradation of the natural environment. Hence, a stabilized rate of population growth will result in a quantifiable reduction of human pressure on the environment, for example by a reduction in carbon emissions, land use change rates and pollution.

Secondly, educated women will have skills that enable them to participate in the decision-making process and resource management. In the global South, women are largely responsible for the collection of raw materials such as fuelwood and play a central role agricultural production due to the persistence of traditional gender roles. Decisionmakers will miss out on gendered knowledge about these resources by excluding women from the decision-making process and thereby reduce the effectiveness of mitigation policies. Moreover, management strategies proposed by women might be more sustainable, as women’s needs are generally more closely related to the preservation of nature. For example, the conservation of forests is essential for the collection of fuel wood.

Nevertheless, the relationship between education, women’s representation in decision-making bodies and environmental sustainability is complex. Patriarchal norms are resilient in many societies and even if chances to participate increase by education, women’s voices may not be heard [pdf]. Additionally, one should keep in mind that women are not a homogenous group. Other factors such as class and race also come at play, and it is unclear how women’s education interacts with those variables. Therefore, it is challenging to quantify the role of increased women’s education in effective and sustainable resource governance.

Bottom line: Education of girls does not only affect social equality, but also has a positive impact on the state of the natural environment. Two important dimensions of these positive environmental externalities are a decrease in carbon emission due to reduction of population growth, and resource management that is more focused on conservation. However, social norms about gender are powerful, which might decrease the effectiveness and benefits of this policy.


* Please help my Environmental Economics students by commenting on unclear analysis, alternative perspectives, better data sources, or maybe just saying something nice :).

Aviation: a wayward wander

Jacinta writes*

Globe trotting has evolved from a luxury to an entitlement, largely enabled through a booming aviation market represented by uncharacteristically low prices. The industry was historically given the freedom to unfurl its wings, liberated by government subsidies through exemptions from VAT on tickets and fuel taxes [pdf], saving UK airlines approximately £10 billion annually.

This industry of substantial significance contributes to 8% of world GDP, 13% of the transport sectors GHG emissions and 2% of global GHG emissions. Masked by the benefits from net gains, the ‘only 2%’ argument has been tossed around a lot. Yet adhering to this train of thought would lead to a global paralysis, as many countries contribute to ‘only — or less than! — 2%’ of GHG emissions, such as the UK, Canada and Australia.

Carbon emissions aren’t the only cause for climatic concern. Due to the altitude at which emissions occur, aviation has more intense short lived impacts from contrails and cirrus clouds, resulting in high radiative forcing. Therefore, narrowing the timescale to a 5-year period, the aviation sector contributes more to global warming than all the cars on the road. This is a stark contrast to comparing only their GHG emissions (share of emissions within the transport sector: 13% aviation : 73% road). Couple this with the fast paced growth of the industry, and concern is brewing. According to the International Civil Aviation Organization (ICAO), by 2020, global aviation emissions are expected to exceed those of 2005 by 70%, with a further estimated growth of 300-700% by 2050. With this all in mind, questions arise over whether these short term impacts are careering us towards (and over) critical climate tipping points.

This complex issue is thus about more than carbon emissions, but action needs to occur, fast. The negative impacts from aviation are neither disputed nor (scientifically) underestimated, but it is one of the few industrial sectors with growing emissions. Technological efficiency has improved fuel efficiency by 70% over the years, but overall growth has outpaced emission reductions, and efficiency improvements will not come at the same rate as in the past. Although a must, promises of alternative fuels; claiming to enable continued growth without jeopardising climate change efforts, are considered fanciful. Therefore, further rapid expansion can not be compatible with the sustainability of the sector.

To date, the ICAO has been solely in charge of mitigation strategies. A challenging feat, being a globalised industry with differential treatment between developed and developing countries. However, results have been insufficient. Most recently, the ICAO 2016 proposal outlines offsetting future carbon emissions against a 2020 baseline, beginning with a voluntary opt-in participation by States. Critics have forecasted it will not be enough and that the “carbon neutral growth” goal will not be achieved:

The difference between various projected emissions and proposed goals (Source [pdf]).

Commentators voice the need for the use of market forces, taxation (whether that be a carbon and/or fuel tax) or stronger regulations, to enforce a stronger compliance to CO2 reduction and more stringent offsetting.

Bottom Line: Despite the technical advances reducing emissions per flight, the rapidly growing aviation sector shows no signs of slowing its contribution to climate change. Robust steps need to be taken to curb impacts.


* Please help my Environmental Economics students by commenting on unclear analysis, alternative perspectives, better data sources, or maybe just saying something nice :).

Bees versus Glyphosate

Jiske writes*

Bee Movie (2007), an animated children’s movie about the lives of bees, highlights bee’s unpaid work of producing honey for humans. Although it is a comedy and does not address the issue in quite a serious way, it is true that bees provide us with free services of plant pollination and honey production. Especially pollination is a vital ecosystem service. If bees were to go extinct, our food supplies would decrease rapidly in variety due to the loss of pollination and the effects of this on the food chain.

In “The Fable of the Bees: an Economic Investigation,” Steven Cheung introduced us to the market of beekeeping (Cheung 1973). He disputes earlier arguments that describe the processes of bees feeding on nectar and pollinating apple blossoms as an unaccounted for “public good” that will be underprovided. Cheung argues that there is a robust market in beekeeping with established financial relationships between farmers and beekeepers, including agreements on when to use pesticides to minimize harm to bees. Still, this paper was written in the ‘70s, and times have changed. Pesticide use, including glyphosate, has increased significantly over the past decades. Importantly, glyphosate use is known to harm honey bees, specifically affecting their gut bacteria.

So how do the benefits of using glyphosate as a weed killer weigh up against the negative effects it has on bees, and the related loss in pollination services and honey production? A logical way of addressing this is by conducting a cost-benefit analysis to compare the monetized benefits of bees services to the costs of using glyphosate under alternative scenarios. One alternative is a full stop to the use of pesticides, which would be benefit bees greatly, but lead to a significant cost due to reduced crop yield for farmers. Another is to substitute a different weed killer, but according to farmers, finding an alternative that is as cheap, and cost-effective as glyphosate is quite the challenge. The bees versus glyphosate controversy is one with essentially the same stakes on each side: food production for humans. No wonder that this issue hasn’t been solved yet.

Bottom line: Bees and pesticides both have positive purposes for food production, and we will have to find a way to ensure sufficient food production in the long term without losing bees as our critical pollinators.


* Please help my Environmental Economics students by commenting on unclear analysis, alternative perspectives, better data sources, or maybe just saying something nice :).

Fukushima’s costs for Germany

Coen writes*

In 2011 an earthquake shook the north east of Japan — an earthquake of such magnitude that the regular safety mechanisms in the Fukushima nuclear power plant needed to kick in. Some reactors shut down, but the tsunami caused by the earthquake damaged backup power generators, which lead to a cooling failure and an overheated reactor that released radioactive material. This nuclear disaster led Germany to immediately shut down eight of its nuclear power plants.

In Germany there is very negative view towards nuclear energy which had already led to multiple plans to phase out nuclear energy. In 1998 the German government had already planned the nuclear phase out, which was then reversed in 2009 by a new government that planned to keep nuclear power plants open until 2030-2035. Post-Fukushima, the government decided to end nuclear generation by 2022.

This new energy strategy puts a major focus on green energy. Germany needs to decrease their greenhouse gas emission by 40% by 2020 to mitigate climate change. Davis et al. [pdf] review the possibilities for the transition to a low carbon energy sector. They observe the energy transition could lead to problems since some energy systems are hard to move away from fossil fuels. These systems need a lot of energy, reliably delivered, which can be hard with renewable wind and solar energy subject to variation. Germany faces this problem and thus only generates small volumes of green energy.  Germany’s turn from nuclear to  lignite coal explains Germany’s failure to meet their CO2 reduction emission targets.

Nuclear energy could provide a stable source of energy, which lends Germany as a good subject for a cost benefit analysis. The analysis will compare the costs of closing nuclear power plants versus keeping them open. The analysis will consider several factors: health effects, CO2 emissions (cost of climate change), expenses for infrastructure development, political implications, and energy variability costs. In order to make the comparison between the scenarios of zero emissions with nuclear or without nuclear energy the energie transitie model can be used. The model could be used to identify changes in Germany’s CO2 output with a changing energy mix.


* Please help my Environmental Economics students by commenting on unclear analysis, alternative perspectives, better data sources, or maybe just saying something nice :).

European travel favours big polluters

Leo writes*

When I read this tweet by Dr. Paul Behrens (below), all my personal frustrations about travelling within Europe re-emerged. I frequently face the decision what mode of transport I should choose when travelling from my home in the very south of Germany to The Hague. Do I take the plane, seeing that it is fast and cheap, yet emits the most CO2 of all transport modes? Or do I take the train, which emits the least CO2, yet is relatively expensive and delays are not an exception but rather the norm?

How have we come to face such a dilemma? The answer is comprised by several factors. With regards to the European aviation sector, one finds that kerosene is exempt from excise duties within the EU [pdf] despite the fact that road and rail transport face excise duties. Interestingly, individual member states are allowed to impose a tax on aviation fuel used in domestic flights. However, the several bilateral agreements between member states to exempt kerosene from taxation shows they do not want to. Rather, they hand out an effective subsidy for the aviation sector which further fuels its growth and emissions. Furthermore, international flights out of Europe, contributing 60% to the rising carbon emissions of European aviation, are entirely unregulated and not subject to VAT on airline tickets [pdf]. Nevertheless, the effectiveness of general ticket taxes in providing necessary incentives for airlines to reduce emissions has been questioned [pdf]. The study suggests basing a ticket tax on specific measurements, including the distance to the destination, as well as on an airline’s average fuel lifecycle emissions. The latter allows the passenger to decide to either fly with an airline that has exclusively used fossil fuels and thus, face a higher tax rate or, choose an airline that has used a share of low carbon fuels.

If flying in Europe will become more expensive, how can it then be ensured that all citizens remain mobile and connected? Looking at the Chinese example of a functioning, affordable high-speed rail network, the answer seems clear. Currently on track to complete 30,000 km of high-speed railway lines by 2020, China has created an effective means of connectivity between major cities throughout the entire country. So, where does the EU stand on high-speed rail? A recent report by the European Court of Auditors arrived at a rather damning conclusion. Not only will the European Commission fail to achieve its target of tripling the number of km of high-speed rail lines by 2030, but the report states that in fact, “there is no European high-speed rail network”. The reason is multi-faceted. Among other factors, operational models differ among member states, resulting in high-speed trains using conventional tracks and conventional trains using high-speed tracks. Moreover, costly high-speed lines able to handle speeds of more than 300 km/h have been constructed where they are not utilized and generally, trains have been found to run on average at approximately 45 % of the lines’ design speed. Thus, even though high-speed trains exist in Europe, they deliver low-added value.

Bottom line: Findings show a general lack of a European wide vision. Neither for taxing the European aviation sector appropriately, nor for ensuring rapid progress in establishing a consistent European high-speed rail network. If the EU is serious about cutting emissions and advocating for rail to be a serious competitor to aviation, enhanced cross-border collaboration is required.


* Please help my Environmental Economics students by commenting on unclear analysis, alternative perspectives, better data sources, or maybe just saying something nice :).